Practice Test - Ch. 3
Acute Triangle Trigonometry

Name: \qquad
Block: \qquad

Multiple Choice
Identify the choice that best completes the statement or answers the question.
C

1. Which expression describes the ratios of side-angle pairs in $\triangle Q R S$?

a. $\quad q(\sin Q)=r(\sin R)=s(\sin S) X$
b. $q(\sin R)=r(\sin S)=s(\sin Q) \times$
c. $\frac{s}{\sin S}=\frac{Q}{\sin Q}=\frac{r}{\sin R}$

Side -Angle pairs are used in
the Sine Law:

$$
\frac{s}{\sin S}=\frac{q}{\sin Q}=\frac{r}{\sin R}
$$

d. $\frac{q}{\sin S}=\frac{r}{\sin Q}=\frac{s}{\sin R} \times 2$
(sides are not paired with opposite angles)
2. In $\triangle D E F, \angle D=61^{\circ}, d=23.9 \mathrm{~cm}$, and $\angle E=38^{\circ}$.

Determine the length of side e to the nearest tenth of a centimetre.
(a.) 16.8 cm
b. 16.0 cm
c. $\quad 17.6 \mathrm{~cm}$
d. $\quad 18.4 \mathrm{~cm}$

Use Sine Law \rightarrow finding side length so sides $\frac{e}{\sin 38}=\gamma \frac{23.9}{\sin 61}$

$$
e=\frac{23.9 \times \sin 38}{\sin 61}=\frac{16.823665}{=16.8 \mathrm{~cm}}
$$

\rightarrow Find d
3. Determine the length of $E F$ to the nearest centimetre.

a. 84 cm
b. 82 cm
c. 88 cm

We have 2 sides and the angle between so we can use Cosine Law.

$$
\begin{aligned}
& d^{2}=e^{2}+f^{2}-2 e f \cos D \\
& d^{2}=92^{2}+78^{2}-2(92)(78) \cos 57 \\
& d^{2}=8464+6084-(14352) \cos 57 \\
& d^{2}=14548-7816.65943 \ldots \\
& d^{2}=6731.340569 \ldots \\
& d=\sqrt{6731.340569} \text { use "ANs" } \\
& d=82.0447 \quad \text { button to keep } \\
& d=\text { answers accurate. }
\end{aligned}
$$

D 4. In $\triangle D E F, d=23.9 \mathrm{~cm}, e=16.8 \mathrm{~cm}$, and $f=27.0 \mathrm{~cm}$.
Determine the measure of $\angle D$ to the nearest degree.
a. $\quad 54^{\circ}$
b. $\quad 64^{\circ}$
c. 68°

Given 3 sides. Since we don't have an angle-side pair we Cant use Sine Law.

Cosine Law:
Trying to
find $\angle D$, so $\quad d^{2}=e^{2}+f^{2}-2 e f \operatorname{Cos} D$

$$
\begin{aligned}
& \text { a must be } \\
& \begin{array}{l}
\text { first in } \\
\text { equation }
\end{array} \\
& 23.9^{2}=16.8^{2}+27.0^{2}-2(16.8)(27.0) \operatorname{Cos} D \\
& \begin{array}{rl}
571.21 & =1011.24-907.2 \operatorname{Cos} D \quad \text { Use "ANS" } \\
-101.24 & 11.23
\end{array} \\
& \begin{array}{ll}
-440.03 \\
-907.2 & =\frac{-907.2 \operatorname{CosD}}{-907.2}
\end{array} \quad \begin{array}{l}
\text { butter for } \\
\text { accuratanswer }
\end{array} \\
& \begin{array}{c}
-9.97 .2 \\
0.48504 \ldots \\
=\operatorname{Cos}^{-907.2} D \Rightarrow D=\operatorname{Cos}^{-1}(0.48504 \ldots)=60.98
\end{array}
\end{aligned}
$$

5. How you would determine the indicated angle measure, if it is possible?

a. the cosine law
b. not possible
c. primary trigonometric ratios
d. the sine law
10.0

18.8

We have 3 sides and no angles
We have 3 sides and no angles
so the only option we have
is the Cosine Law.
We have 3 sides and
so the only option
is the Cosine Law.

$$
\begin{aligned}
& 19.7^{2}=10^{2}+18.8^{2}-2(10)(18.8) \cos \theta \\
& \begin{array}{l}
388.09=453.44-376 \operatorname{Cos} \theta \\
-453.44 \\
-453.44
\end{array} \\
& \frac{-65.35}{-376}=\frac{-376 \operatorname{Cos} \theta}{-376} \\
& 0.173803 \ldots=\operatorname{Cos} \theta \\
& \theta=\operatorname{Cos}^{-1}(0.173803 \ldots) \\
& \theta=79.99 \\
& =80^{\circ}
\end{aligned}
$$

Short Answer
6. Sketch a triangle that corresponds to the equation.

Sech a triangle that corresponds to the equation Third sid length. $=80^{\circ}$
$\frac{10.0}{\sin 30^{\circ}}=\frac{19.70}{\sin 80^{\circ}} \quad$ Sine law gives sides and opposite angles

use angle sum of \triangle to find $\angle C$:

$$
c=180-30-80=70^{\circ}
$$

use sine law or cosine law to find c.
Sine law:

$$
\begin{array}{ll}
\frac{c}{\sin 70}=\frac{10.0}{\sin 30} & \stackrel{O R}{\sin 70} \not \frac{c}{\sin 80} \\
c=\frac{10.0 \times \sin 70}{\sin 30} & c=\frac{19.7 \times \sin 70}{\sin 80} \\
c=18.8 & c=18.8
\end{array}
$$

$$
\begin{aligned}
\angle C & =70^{\circ} \\
C & =18.8
\end{aligned}
$$

OR Cosine Law:

$$
\begin{aligned}
& c^{2}=19.7^{2}+10.0^{2}-2(19.7)(10.0) \operatorname{Cos} 70 \\
& c^{2}=488.09-394 \operatorname{Cos} 70 \\
& c^{2}=353.3340635 \\
& c=\sqrt{353.3340635} \\
& c=18.8 \quad \text { Use } \\
& \text { "Ans" for } \\
& \text { most accurate } \\
& \text { answer. }
\end{aligned}
$$

7. In $\triangle G H I, g=30.0 \mathrm{~cm}, i=19.3 \mathrm{~cm}$, and $\angle H=53^{\circ}$.

Determine the measure of h to the nearest tenth of a centimetre.

Two sides and the angle between so we must use Cosine Law.

$$
\begin{aligned}
& h^{2}=g^{2}+i^{2}-2 g i \operatorname{Cos} H \\
& h^{2}=30^{2}+19.3^{2}-2(30)(19.3) \operatorname{Cos} 53 \\
& h^{2}=1272.49-1158 \operatorname{Cos} 53 \\
& h^{2}=575.5882032 \ldots \\
& h=\sqrt{575.5882032 \ldots} \quad \text { Use "ANs" button } \\
& h=23.9914 \\
& h=24.0 \mathrm{~cm} \quad \text { for accurate } \quad \text { answers. }
\end{aligned}
$$

8. A kayak leaves a dock on Lake Athabasca, and heads due north for 2.8 km . At the same time, a second kayak travels in a direction $\mathrm{N} 70^{\circ} \mathrm{E}$ from the dock for 3.0 km .
Determine the distance between the kayaks, to the nearest tenth of a kilometre.

Given 2 sides and the angle between Must use Cosine Law:

$$
\begin{array}{ll}
x^{2}=2.8^{2}+3.0^{2}-2(2.8)(3.0) \operatorname{Cos} 70 \\
x^{2}=16.84-16.8 \cos 70 \\
x^{2}=11.09406159 \ldots & \\
x=\sqrt{11.09406159 \ldots} & \text { Use "ANs" } \\
x=3.33077 & \text { button for } \\
\begin{array}{ll}
\text { most accurate } \\
x & =3.3 \mathrm{~km}
\end{array} & \text { answers. }
\end{array}
$$

The Kayaks are 3.3 km apart
9. How long, to the nearest inch, is the left rafter in the roof shown?

If we find the top angle we will have a side-angle pair and can use Sine Law.

$$
\text { Top angle }=180-46-49=85^{\circ}
$$

Looking for side length so sides go on top of fractions

$$
\begin{aligned}
& \frac{x}{\sin 49}=\frac{40}{\sin 85} \\
& x=\frac{40 \times \operatorname{Sin} 49}{\operatorname{Sin} 85} \\
& x=30.30369793 \\
& \text { Convert decimal portion to inches: } \\
& \text { (Subtract } 30 \text { to keep accurate number on Calculator) } \\
& 0.30369793 \mathrm{ft} \times \frac{12 \mathrm{in}}{1 \mathrm{ft}}=3.644375142 \\
& \text { The left rafter is } \\
& =4 \text { inches } \\
& 30 \mathrm{ft} 4 \text { in long. }
\end{aligned}
$$

10. A radar operator on a ship discovers a large sunken vessel lying parallel to the ocean surface, 180 m directly below the ship. The length of the vessel is a clue to which wreck has been found. The radar operator measures the angles of depression to the front and back of the sunken vessel to be 52° and 67°. How long, to the nearest tenth of a metre, is the sunken vessel?

Find x :
$\sin 67=\frac{\mathrm{opp}}{\text { hyp }}$
$\frac{\sin 67}{1} \geq \frac{180}{x}$
$\frac{x \cdot \sin 67}{\sin 67}=\frac{180}{\operatorname{Sin} 67}$
$x=180 \div \sin 67$
OR Find z : (use \sin or \cos)

$$
\operatorname{Cos} 38=\frac{a d j}{h y p}
$$

$$
\frac{\cos 38}{1} \times \frac{180}{z}
$$

$$
x=195.5449
$$

Start by finding either x or z (use primary Trigonometry Ratios)

Now we can use the sine law OR cosine law to find the length of the sunken vessel:

$$
\begin{aligned}
& \frac{V}{\operatorname{Sin} 61}=\frac{228.4233}{\sin 67} \\
& V=\frac{228.4233 \times \sin 61}{\operatorname{Sin} 67} \\
& V=217.0369
\end{aligned}
$$

The sunken vessel is 217.0 m long

Problem
11. A radio tower is supported by two wires on opposite sides. On the ground, the ends of the wire are 280 m apart. One wire makes a 60° angle with the ground.
The other makes a 66° angle with the ground.
Draw a diagram of the situation. Then, determine the length of each wire to the nearest metre. Show your work.

Use angle sum of \triangle to find $\angle Y$:

$$
Y=180-60-66=54
$$

Use Sine Law to find x :
 $x=316.1772$
Wire 1 is 316 m long Wire 2 is 300 m long

Sine Law:

$$
\begin{aligned}
& \frac{z}{\sin 60}=\frac{280}{\sin 54} \\
& z=\frac{280 \cdot \sin 60}{\sin 54} \\
& z=299.7306
\end{aligned}
$$

or Cosine Law:

$$
\begin{gathered}
z^{2}=316.1772^{2}+2880^{2}-2\left(3(161070){ }^{(280)(60560}\right. \\
z^{2}=89838.4058 \\
z=\sqrt{89838.4058} \\
z=299.7306
\end{gathered}
$$

12. Determine, to the nearest centimetre, the perimeter of the triangle. Show your work.

Find $\angle N: N=180-50-80=50^{\circ}$ Use sine Law to find for n.

$$
\begin{array}{ll}
\frac{m}{\sin 50}=\frac{14}{\sin 50} & \frac{l}{\sin 80}=\frac{14}{\sin 50} \\
m=\frac{14 \cdot \sin 50}{\sin 50} & l=\frac{14 \cdot \sin 80}{\sin 50} \\
m=14 & l=17.998
\end{array}
$$

Two equal angles
mean $\triangle L M N$
is an isosceles triangle.

Perimeter is the distance around the triangle:

$$
\begin{gathered}
P=14+14+17.998=45.998 \\
P=46 \mathrm{~cm}
\end{gathered}
$$

13. A parallelogram has sides that are 10 cm and 12 cm long.

One of the angles in the parallelogram measures 55°.
Determine the length of the shorter diagonal to the nearest tenth of a centimetre.

Two sides and the angle between \rightarrow Use Cosine Law to find x :

The shorter diagonal is 10.3 cm

$$
\begin{aligned}
& x^{2}=10^{2}+12^{2}-2(10)(12) \cos 55 \\
& x^{2}=244-240 \cos 55 \\
& x^{2}=106.3416553 \\
& x=\sqrt{106.3416553} \text { use "Ans"1 } \\
& x=10.3122 \quad \text { button for } \\
& x \quad \text { accurate answer. }
\end{aligned}
$$

All sides $\frac{1}{4}$ angles equal
14. Determine the perimeter of the regular pentagon to the nearest tenth of a centimetre

Find angle at the centre 360° split into 5 equal sections means each centre angle is 72°

$$
x^{2}=8.5^{2}+8.5^{2}-2(85)(8.5)(\cos 72
$$

$$
x^{2}=144.5-144.5 \cos 72
$$

$$
x^{2}=99.84704431
$$

$$
x=\sqrt{99.84704431} \leftarrow \text { Use }
$$

$$
x=9.992 \quad \text { get accurate }
$$ answer

Perimeter is the distance around the shape.
A regular pentagon has 5 equal sides.

$$
\begin{aligned}
& P=5 \times 9.992 \\
& P=49.96
\end{aligned}
$$

The pentagon has a perimeter of 50.0 cm

