FUM 11

Ch. 2 Practice Test
Properties of Angles and Triangles

Name: \qquad
Block: \qquad

Multiple Choice

Identify the choice that best completes the statement or answers the question.

1. Which statement about the angles in this diagram is false?

\qquad

Alternate Exterior Angles
a.) $\angle b=50^{\circ}$ FALSE $\rightarrow \angle b=62^{\circ} \rightarrow$ OR Vertically Opposite to $\angle f$
a. $\angle b=50^{\circ}$ TRUE \rightarrow Supplementary Angles
c. $\angle e=130^{\circ}$ TRUE \rightarrow Alternate Interior
d. $\angle f=62^{\circ}$ TRUE \rightarrow Corresponding Angles
2. Which statement about the angles in this diagram is false?
a.) $\angle g=36^{\circ}$ FALSE $\angle g=144 \rightarrow$ Co-Interior to $\angle d$ which is 36°
b. $\angle a=36^{\circ}$ TRUE \rightarrow Corresponding $\quad \angle c=36^{\circ}$ TRUE \rightarrow opposite angle (to y) in parralelogram
d. $\angle d=36^{\circ}$ TRUE \rightarrow Corresponding to y
3. Which are the correct measures of the indicated angles?
or Supplementary if

$\omega=103^{\circ}$ Vertically Opposite ${ }^{\prime}$ you find y ' first
$y=77^{\circ}$ Supplementary Angles \rightarrow or Angles Line a

a. $\angle w=77^{\circ}, \angle x=77^{\circ}, \angle y=103^{\circ}$
b. $\angle w=77^{\circ}, \angle x=103^{\circ}, \angle y=103^{\circ}$
c. $\angle w=103^{\circ}, \angle x=77^{\circ}, \angle y=77^{\circ}$
d. $\angle w=103^{\circ}, \angle x=103^{\circ}, \angle y=77^{\circ}$
4. Which are the correct measures for $\angle Y X Z$ and $\angle X Z Y$?

Find $\begin{aligned} & \angle X Z Y \text { First: } \\ & \angle X Z Y=81^{\circ}\end{aligned}$
Exterior Angle of \triangle is equal to sum. of opposite interior angles.
$\angle Y X Z=63^{\circ}$
Angle Sum \triangle
or Supplementary Angles
$O R$ Find $\angle Y X Z$ First:

$$
\angle Y X Z=63^{\circ}
$$

Supplementary Angles

$$
\angle X Z Y=81^{\circ}
$$

Angle Sum \triangle
or the sum of 2 interior angles of a triangle is equal to opposite exterior angle.
a. $\angle Y X Z=63^{\circ}, \angle X Z Y=91^{\circ}$
b. $\angle Y X Z=53^{\circ}, \angle X Z Y=91^{\circ}$
c. $\angle Y X Z=63^{\circ}, \angle X Z Y=81^{\circ}$
d. $\angle Y X Z=53^{\circ}, \angle X Z Y=81^{\circ}$
5. Which are the correct measures of the interior angles of $\triangle C D E$?

a. $\angle D C E=92^{\circ}, \angle C D E=49^{\circ}$, and $\angle C E D=39^{\circ}$
b. $\angle D C E=52^{\circ}, \angle C D E=69^{\circ}$, and $\angle C E D=59^{\circ}$
c. $\angle D C E=62^{\circ}, \angle C D E=49^{\circ}$, and $\angle C E D=69^{\circ}$
d. $\angle D C E=72^{\circ}, \angle C D E=59^{\circ}$, and $\angle C E D=49^{\circ}$
 Angles (or Angles on a line)

$$
\angle D C E=72^{\circ} \text { Angle Sum of } \begin{gathered}
\text { Triangle }
\end{gathered}
$$

6. Determine the sum of the measures of the interior angles of this polygon.

a. 1080°
b. 1440°
c. 720°
d. 540°

Sum of Interior Angles of Polygon $=180(n-2)$ This Polygon has 8 sides, so $n=8$

$$
\begin{aligned}
\text { Angle Sum } & =180(8-2) \\
& =180(6) \\
& =1080^{\circ}
\end{aligned}
$$

This means all the angles are equal
so $n \times 144^{\circ}=$ Total sum of Interior Angles
7. Each interior angle of a regular convex polygon measures 144°. How many sides does the polygon have?
(a.) 10
b. 11
c. 8
d. 9

$$
\begin{aligned}
& \text { Sum of All Interior Angles }=180(n-2) \\
& n \times 144=180(n-2) \\
& 144 n=180 n-360 \\
& -144 n-144 n \\
& \text { This means } \\
& \text { the polygon has } \\
& 10 \text { sides } \\
& \begin{array}{r}
0=36 n-360 \\
+360 \\
+360
\end{array} \\
& \text { र } \frac{360}{36}=\frac{36 n}{36} \\
& \begin{array}{c}
\frac{360}{36}=\frac{36 n}{36} \\
10=n
\end{array}
\end{aligned}
$$

Top Polygon is Regular Hexagon.
Interior Angle Sum $=180(n-2)$

$$
=180(4)
$$

$$
=720^{\circ}
$$

Each Angle $=720 \div 6=120^{\circ}$

Bottom Polygon is Regular Octagon. Interior Angle

$$
\begin{aligned}
\text { Sum } & =180(n-2) \mathrm{J} \\
& =180(8-2) \\
& =180(6) \\
& =1080^{\circ} \\
\text { Each Angle } & =1080^{\circ} \div 8^{\prime} \\
& =135^{\circ}
\end{aligned}
$$

This is an Isosceles Trapezoid The two Angles opposite the equal sides are equal so these must both be 60°.

This means the 30° angle plus angle a must be 60°
(a.) 30° so Angle $a=30^{\circ}$
c. 45°
c. $\quad 45^{\circ}$
d. 25°

Short Answer

9. Determine the measure of $\angle D B F$.

$$
\angle D B F=14^{\circ}
$$

Vertically Opposite Angles are equal.
10. Determine the values of a, b, and c.

(supplementary Angles)

$$
\frac{10 a}{10}=\frac{180}{10}
$$

$$
a=18^{\circ}
$$

$\begin{aligned} & 3 a=b \quad \text { (Corresponding Angles) } \\ & 3(18)=b\end{aligned}$
$3(18)=b$

$$
54^{\circ}=b
$$

$b^{\downarrow}=2 c \quad$ (Vertically Opposite)
$\frac{54}{2}=\frac{2 c}{2}$

$$
27^{\circ}=c
$$

11. Determine the measure of $\angle N M O$.

$\angle M N P=75^{\circ}$ Alternate Interior Angles
$\angle M N O=53^{\circ} \quad\left(75^{\circ}-22^{\circ}\right)$
$\angle N M O=82^{\circ}$ Angle Sum of \triangle
12. Determine the unknown angles.

$\angle 1=47^{\circ}$ Co-Interior Angles Add to 180° $\angle 3=47^{\circ}$ Corresponding Angles are Equal (or supplementary Angles) $\angle 4=51^{\circ}$ Angle Sum of Triangle $\angle 2=51^{\circ}$ Corresponding Angles
(or Angle Sum of Large Δ)
$\angle 5=129^{\circ}$ Supplementary Angles Add to 180° (or Co-Interior Angles or Angle Sum
of Quodriliterall)
13. Determine the value of x.

Angle sum of Triangle $=180^{\circ}$

$$
(x+31)+(2 x+23)+3 x=180^{\circ}
$$

$$
\begin{aligned}
& x+31+2 x+23+3 x=180^{\circ} \\
& 6 x+54=180^{\circ} \\
&-54
\end{aligned}
$$

$$
\frac{6 x}{6}=\frac{126^{\circ}}{6}
$$

$$
x=21^{\circ}
$$

14. Determine the sum of the measures of the angles in a 13-sided convex polygon.

Show your calculation.

$$
\begin{aligned}
& \text { Sum Interior Angles }=180(n-2) \\
& 13 \text { sides means } n=13 \\
& \text { Angle Sum }
\end{aligned} \begin{aligned}
& =180(13-2) \\
& =180(11) \\
& =1980^{\circ}
\end{aligned}
$$

Problem
15. Describe four different methods to prove $E F \| G H$.

- If any of the corresponding Angles are equal then $E F$ must be parallel to GH.

$$
(1=5,2=6,3=8 \text { or } 4=7)
$$

- If Co-Interior Angles add to 180° then EF must be parallel to 6 H . ($3+5=180^{\circ}$ OR $4+6=180^{\circ}$)
- If Alternate Interior Angles turn att to be equal then EF must be parallel to 6 H . ($3=6$ or $4=5$)
- If Alternate Exterior Angles are equal then EF must be parallel to GH. $(2=8$ OR $1=7)$
- If co-Exterior Angles add to 180° then EF must be parallel to GH . $\left(1+8=180^{\circ}\right.$ or $\left.2+T=180^{\circ}\right)$

$\angle G H I=13^{\circ}$ Angles on Line $=180^{\circ}$
FG|| hi Alternate Interior Angles
are equal so lines must be parallel.

17. Each interior angle of a regular polygon is eight times as large as its corresponding exterior angle. How many sides does the polygon have? Explain your answer
Interior Angles
are 8 times
the Exterior
Angles

$$
\begin{aligned}
8 x+x & =180^{\circ} \quad \text { (Supplementary Angles) } \\
\frac{9 x}{9} & =\frac{180}{9} \\
x & =20^{\circ}
\end{aligned}
$$

Each exterior angle is 20°
For any polygon the exterior angles add to 360°
In a regular polygon all the exterior angles are the same. There are n angles and each one measures 20°

This polygon has

$$
n=18
$$ 18 sides

